On uniquely k-determined permutations

نویسندگان

  • Sergey V. Avgustinovich
  • Sergey Kitaev
چکیده

Motivated by a new point of view to study occurrences of consecutive patterns in permutations, we introduce the notion of uniquely k-determined permutations. We give two criteria for a permutation to be uniquely k-determined: one in terms of the distance between two consecutive elements in a permutation, and the other one in terms of directed hamiltonian paths in the certain graphs called path-schemes. Moreover, we describe a finite set of prohibitions that gives the set of uniquely k-determined permutations. Those prohibitions make the application of the transfer matrix method possible for determining the number of uniquely k-determined permutations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharply $(n-2)$-transitive Sets of Permutations

Let $S_n$ be the symmetric group on the set $[n]={1, 2, ldots, n}$. For $gin S_n$ let $fix(g)$ denote the number of fixed points of $g$. A subset $S$ of $S_n$ is called $t$-emph{transitive} if for any two $t$-tuples $(x_1,x_2,ldots,x_t)$ and $(y_1,y_2,ldots ,y_t)$ of distinct elements of $[n]$, there exists $gin S$ such that $x_{i}^g=y_{i}$ for any $1leq ileq t$ and additionally $S$ is called e...

متن کامل

Reconstructing Permutations from Identification Minors

We consider the problem whether a permutation of a finite set is uniquely determined by its identification minors. While there exist non-reconstructible permutations of every set with two, three, or four elements, we show that every permutation of a finite set with at least five elements is reconstructible from its identification minors. Moreover, we provide an algorithm for recovering a permut...

متن کامل

AVOIDANCE OF PARTIALLY ORDERED PATTERNS OF THE FORM k-σ-k

Sergey Kitaev [4] has shown that the exponential generating function for permutations avoiding the generalized pattern σ-k, where σ is a pattern without dashes and k is one greater than the largest element in σ, is determined by the exponential generating function for permutations avoiding σ. We show that the exponential generating function for permutations avoiding the partially ordered patter...

متن کامل

About uniquely colorable mixed hypertrees

A mixed hypergraph is a triple H = (X, C,D) where X is the vertex set and each of C, D is a family of subsets of X, the C-edges and D-edges, respectively. A k-coloring of H is a mapping c : X → [k] such that each C-edge has two vertices with the same color and each D-edge has two vertices with distinct colors. H = (X, C,D) is called a mixed hypertree if there exists a tree T = (X, E) such that ...

متن کامل

On the Monotonicity of the Dittert Function on Classes of Nonnegative Matrices

where σ runs over all permutations of {1, · · · , n}. For k ∈ {1, · · · , n}, let σk(A) denote the sum of all subpermanents of order k of A. The famed van der Waerden Egoryĉev Falikman theorem [3],[4] asserts that the permanent function attains its minimum overn uniquely at Jn. In [4], Friedland and Minc remarked that a stronger version of this theorem is the following. MONOTONICITY CONJECTURE...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 308  شماره 

صفحات  -

تاریخ انتشار 2008